Drivers, barriers, and outcomes of organizational-level human resource analytics adoption: a PRISMA-guided systematic review

Abstract

Human Resource Analytics (HRA) has emerged as a strategic capability that enables organizations to make data-driven and evidence-based human capital decisions. However, its adoption remains uneven and conceptually fragmented. This study systematically reviews the drivers, barriers, and ethical considerations influencing the organizational adoption of HRA between 2015 and 2025. A structured search was conducted exclusively in the Scopus database following the PRISMA 2020 protocol to ensure transparency and replicability. From an initial corpus of 295 records, 67 studies met the inclusion criteria after duplicate removal, relevance screening, and full-text assessment. The synthesis shows that the Resource-Based View (RBV) remains the dominant theoretical foundation, complemented by Technology-Organization-Environment (TOE) and Socio-Technical Systems perspectives. Technological readiness, top management support, and external support commonly enable adoption, while data quality, analytical capability, and privacy issues remain key barriers. Ethical and sustainability concerns – particularly fairness, transparency, and responsible data governance – are increasingly emphasized in recent studies. This review provides a structured synthesis and future research agenda bridging theoretical and practical perspectives, offering insights for strengthening analytics governance, organizational capability, and evidence-based decision cultures.

Keywords
  • Artificial intelligence
  • Human Resource Analytics
  • Systematic Literature Review
  • Data-Driven Decision Making
  • Organizational Performance
References
  1. Abellán-Sevilla, A.-J., & Ortiz-de-Urbina-Criado, M. (2023). Smart human resource analytics for happiness management. Journal of Management Development, 42(6), 514–525. https://doi.org/10.1108/JMD-03-2023-0064
  2. Abuzaid, A. N. (2024). Examining the moderating role of data literacy in the relationship between human resource analytics and employee innovative behavior. International Journal of Data and Network Science, 8(3), 1415–1428. https://doi.org/10.5267/j.ijdns.2024.4.001
  3. Alam, S., Dong, Z., Kularatne, I., & Rashid, M. S. (2025). Exploring approaches to overcome challenges in adopting human resource analytics through stakeholder engagement. Management Review Quarterly. https://doi.org/10.1007/s11301-025-00491-y
  4. Álvarez-Gutiérrez, F. J., Stone, D. L., Castaño, A. M., & García-Izquierdo, A. L. (2022). Human Resources Analytics: A systematic Review from a Sustainable Management Approach. Revista de Psicología Del Trabajo y de Las Organizaciones, 38(3), 129–147. https://doi.org/10.5093/jwop2022a18
  5. Anthun, K. S., Anthun, K. S., Håland, E., & Lillefjell, M. (2024). What influences the use of HR analytics in Human Resource management in Norwegian municipal health care services? BMC Health Services Research, 24(1), 1131. https://doi.org/10.1186/s12913-024-11610-y
  6. Arora, M., Prakash, A., Dixit, S., Mittal, A., & Singh, S. (2023). A critical review of HR analytics: Visualization and bibliometric analysis approach. Information Discovery and Delivery, 51(3), 267–282. https://doi.org/10.1108/IDD-05-2022-0038
  7. Arora, M., Prakash, A., Mittal, A., & Singh, S. (2023). Moderating role of resistance to change in the actual adoption of HR analytics in the Indian banking and financial services industry. Evidence-Based HRM: A Global Forum for Empirical Scholarship, 11(3), 253–270. https://doi.org/10.1108/EBHRM-12-2021-0249
  8. Arora, S., Chaudhary, P., & Singh, R. K. (2024). Adoption of HR analytics for future-proof decision making: Role of attitude toward artificial intelligence as a moderator. International Journal of Organizational Analysis. https://doi.org/10.1108/IJOA-03-2024-4392
  9. Bahuguna, P. C., Srivastava, R., & Tiwari, S. (2024). Human resources analytics: Where do we go from here? Benchmarking: An International Journal, 31(2), 640–668. https://doi.org/10.1108/BIJ-06-2022-0401
  10. Bassi, L., & McMurrer, D. (2016). Four Lessons Learned in How to Use Human Resource Analytics to Improve the Effectiveness of Leadership Development. Journal of Leadership Studies, 10(2), 39–43. https://doi.org/10.1002/jls.21471
  11. Bechter, B., Brandl, B., & Lehr, A. (2022). The role of the capability, opportunity, and motivation of firms for using human resource analytics to monitor employee performance: A multi‐level analysis of the organisational, market, and country context. New Technology, Work and Employment, 37(3), 398–424. https://doi.org/10.1111/ntwe.12239
  12. Belizón, M. J., & Kieran, S. (2022). Human resources analytics: A legitimacy process. Human Resource Management Journal, 32(3), 603–630. https://doi.org/10.1111/1748-8583.12417
  13. Belizón, M. J., Majarín, D., & Aguado, D. (2024). Human resources analytics in practice: A knowledge discovery process. European Management Review, 21(3), 659–677. https://doi.org/10.1111/emre.12605
  14. Bonilla-Chaves, E. F., & Palos-Sánchez, P. R. (2023). Exploring the Evolution of Human Resource Analytics: A Bibliometric Study. Behavioral Sciences, 13(3), 244. https://doi.org/10.3390/bs13030244
  15. Brandford Bervell, B., Kumar, J. A., Arkorful, V., Agyapong, E. M., & Osman, S. (2021). Remodelling the role of facilitating conditions for Google Classroom acceptance: A revision of UTAUT2. Australasian Journal of Educational Technology, 115–135. https://doi.org/10.14742/ajet.7178
  16. Budak, M. C., & Soyer, A. (2025). Human resources analytics performance measurement: A novel hybrid approach based on cumulative belief degree and PLS-SEM. International Journal of Intelligent Computing and Cybernetics, 18(2), 353–381. https://doi.org/10.1108/IJICC-10-2024-0535
  17. Cavanagh, J., Bartram, T., Walker, M., Pariona-Cabrera, P., & Halvorsen, B. (2024). Health services in Australia and the impact of antiquated rostering practices on medical scientists: A case for HR analytics and evidenced-based human resource management. Personnel Review, 53(1), 18–33. https://doi.org/10.1108/PR-09-2021-0690
  18. Cayrat, C., & Boxall, P. (2022). Exploring the phenomenon of HR analytics: A study of challenges, risks and impacts in 40 large companies. Journal of Organizational Effectiveness: People and Performance, 9(4), 572–590. https://doi.org/10.1108/JOEPP-08-2021-0238
  19. Chatterjee, S., Chaudhuri, R., Vrontis, D., & Siachou, E. (2022). Examining the dark side of human resource analytics: An empirical investigation using the privacy calculus approach. International Journal of Manpower, 43(1), 52–74. https://doi.org/10.1108/IJM-02-2021-0087
  20. Chhetri, S. D., Kumar, D., & Ranabhat, D. (2023). Investigating research in human resource analytics through the lens of systematic literature review. Human Systems Management, 1–17. https://doi.org/10.3233/HSM-230004
  21. Cho, W., Choi, S., & Choi, H. (2023). Human Resources Analytics for Public Personnel Management: Concepts, Cases, and Caveats. Administrative Sciences, 13(2), 41. https://doi.org/10.3390/admsci13020041
  22. Dahlbom, P., Siikanen, N., Sajasalo, P., & Jarvenpää, M. (2019). Big data and HR analytics in the digital era. Baltic Journal of Management, 15(1), 120–138. https://doi.org/10.1108/BJM-11-2018-0393
  23. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
  24. Dhankhar, K., & Singh, A. (2023). Employees’ adoption of HR analytics – a theoretical framework based on career construction theory. Evidence-Based HRM: A Global Forum for Empirical Scholarship, 11(3), 395–411. https://doi.org/10.1108/EBHRM-02-2022-0053
  25. Dhiman, N., Kumar, S., & Nagpal, T. (2023). Employee’s Intentions to Use HR Analytics: Technology Acceptance Model with Job Relevance and Self-Efficacy. Vision: The Journal of Business Perspective, 09722629231183540. https://doi.org/10.1177/09722629231183540
  26. Di Prima, C., Cepel, M., Kotaskova, A., & Ferraris, A. (2024). Help me help you: How HR analytics forecasts foster organizational creativity. Technological Forecasting and Social Change, 206, 123540. https://doi.org/10.1016/j.techfore.2024.123540
  27. Di Prima, C., Hussain, W. M. H. W., & Ferraris, A. (2024). No more war (for talent): The impact of HR analytics on talent management activities. Management Decision, 62(10), 3109–3131. https://doi.org/10.1108/MD-07-2023-1198
  28. Di Prima, C., Kotaskova, A., Yildiz, H., & Ferraris, A. (2024). How to survive social crises? An HR analytics data-driven approach to improve social sustainable operations’ effectiveness. Management Decision, 62(7), 2064–2084. https://doi.org/10.1108/MD-06-2023-0973
  29. Diefenhardt, F., Rapp, M. L., Bader, V., & Mayrhofer, W. (2025). ‘In God We Trust. All Others Must Bring Data’: Unpacking the Influence of Human Resource Analytics on the Strategic Recognition of Human Resource Management. Human Resource Management Journal, 35(3), 597–612. https://doi.org/10.1111/1748-8583.12583
  30. Edwards, M. R., Charlwood, A., Guenole, N., & Marler, J. (2024). HR analytics: An emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal, 34(2), 326–336. https://doi.org/10.1111/1748-8583.12435
  31. Ellmer, M., & Reichel, A. (2021). Staying close to business: The role of epistemic alignment in rendering HR analytics outputs relevant to decision-makers. The International Journal of Human Resource Management, 32(12), 2622–2642. https://doi.org/10.1080/09585192.2021.1886148
  32. Espegren, Y. (2024). Reasons for HR analytics adoption in public sector organisations: Evidence from Swedish public administrations. Personnel Review. https://doi.org/10.1108/PR-03-2024-0219
  33. Fernandez, V., & Gallardo-Gallardo, E. (2021). Tackling the HR digitalization challenge: Key factors and barriers to HR analytics adoption. Competitiveness Review: An International Business Journal, 31(1), 162–187. https://doi.org/10.1108/CR-12-2019-0163
  34. Gerber, M., Krause, A., Probst, J., & Heimann, M. (2024). HR analytics between ambition and reality: Current state and recommendations for the contribution of work and organizational psychology. Gruppe. Interaktion. Organisation. Zeitschrift Für Angewandte Organisationspsychologie (GIO), 55(2), 225–236. https://doi.org/10.1007/s11612-024-00743-7
  35. Gurusinghe, R. N., Arachchige, B. J. H., & Dayarathna, D. (2021). Predictive HR analytics and talent management: A conceptual framework. Journal of Management Analytics, 8(2), 195–221. https://doi.org/10.1080/23270012.2021.1899857
  36. Hülter, S. M., Ertel, C., & Heidemann, A. (2024). Exploring the individual adoption of human resource analytics: Behavioural beliefs and the role of machine learning characteristics. Technological Forecasting and Social Change, 208, 123709. https://doi.org/10.1016/j.techfore.2024.123709
  37. Jiang, Y., & Akdere, M. (2022). An operational conceptualization of human resource analytics: Implications for in human resource development. Industrial and Commercial Training, 54(1), 183–200. https://doi.org/10.1108/ICT-04-2021-0028
  38. Kardani Malekinezhad, M., Rahimnia, F., Eslami, G., & Farahi, M. M. (2025). Human resource analytics adoption: A framework-based analysis, fuzzy Delphi method and fuzzy SWARA. Journal of Advances in Management Research, 22(4), 597–627. https://doi.org/10.1108/JAMR-05-2024-0181
  39. Karwehl, L. J., & Kauffeld, S. (2021). Traditional and new ways in competence management: Application of HR analytics in competence management. Gruppe. Interaktion. Organisation. Zeitschrift Für Angewandte Organisationspsychologie (GIO), 52(1), 7–24. https://doi.org/10.1007/s11612-021-00548-y
  40. Kiran, P. R., Chaubey, A., & Shastri, R. K. (2024). Role of HR analytics and attrition on organisational performance: A literature review leveraging the SCM-TBFO framework. Benchmarking: An International Journal, 31(9), 3102–3129. https://doi.org/10.1108/BIJ-06-2023-0412
  41. Lasda Bergman, E. M. (2012). Finding Citations to Social Work Literature: The Relative Benefits of Using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship, 38(6), 370–379. https://doi.org/10.1016/j.acalib.2012.08.002
  42. Margherita, A. (2022). Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32(2), 100795. https://doi.org/10.1016/j.hrmr.2020.100795
  43. Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1), 3–26. https://doi.org/10.1080/09585192.2016.1244699
  44. McCartney, S., & Fu, N. (2022). Bridging the gap: Why, how and when HR analytics can impact organizational performance. Management Decision, 60(13), 25–47. https://doi.org/10.1108/MD-12-2020-1581
  45. Michelotti, M., McColl, R., Puncheva‐Michelotti, P., Clarke, R., & McNamara, T. (2024). The effects of medium and sequence on personality trait assessments in face‐to‐face and videoconference selection interviews: Implications for HR analytics. Human Resource Management Journal, 34(2), 292–310. https://doi.org/10.1111/1748-8583.12425
  46. Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  47. Muhammad, G., & Naz, F. (2022). A moderating role of HR analytics between employee engagement, retention and organisational performance. International Journal of Business Environment, 13(4), 345. https://doi.org/10.1504/IJBE.2022.126370
  48. Muhammad, G., Siddiqui, M. S., Rasheed, R., Shabbir, H., & Sher, R. F. (2024). Role of External Factors in Adoption of HR Analytics: Does Statistical Background, Gender and Age Matters? Journal of Business Analytics, 7(1), 1–14. https://doi.org/10.1080/2573234X.2023.2231966
  49. Panic, N., Leoncini, E., De Belvis, G., Ricciardi, W., & Boccia, S. (2013). Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoS ONE, 8(12), e83138. https://doi.org/10.1371/journal.pone.0083138
  50. Pariona‐Cabrera, P., Cavanagh, J., & Halvorsen, B. (2023). Examining the need for HR analytics to better manage and mitigate incidents of violence against nurses and personal care assistants in aged care. Asia Pacific Journal of Human Resources, 61(4), 888–906. https://doi.org/10.1111/1744-7941.12361
  51. Patre, S. (2016). Six Thinking Hats Approach to HR Analytics. South Asian Journal of Human Resources Management, 3(2), 191–199. https://doi.org/10.1177/2322093716678316
  52. Qamar, Y., & Samad, T. A. (2022). Human resource analytics: A review and bibliometric analysis. Personnel Review, 51(1), 251–283. https://doi.org/10.1108/PR-04-2020-0247
  53. Ramachandran, R., Babu, V., & Murugesan, V. P. (2024). Human resource analytics revisited: A systematic literature review of its adoption, global acceptance and implementation. Benchmarking: An International Journal, 31(7), 2360–2390. https://doi.org/10.1108/BIJ-04-2022-0272
  54. Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR analytics avoids being a management fad. Organizational Dynamics, 44(3), 236–242. https://doi.org/10.1016/j.orgdyn.2015.05.008
  55. Ratnam, D. S., & Devi, V. R. (2024). Addressing impediments to HR analytics adoption: Guide to HRD professionals. Human Resource Development International, 27(1), 142–151. https://doi.org/10.1080/13678868.2023.2195986
  56. Rigamonti, E., Colaiacovo, B., Gastaldi, L., & Corso, M. (2025). HR analytics and the data collection process: The role of attributions and perceived legitimacy in explaining employees’ fear of datafication. Journal of Organizational Effectiveness: People and Performance, 12(5), 1–23. https://doi.org/10.1108/JOEPP-06-2023-0246
  57. Rigamonti, E., Gastaldi, L., & Corso, M. (2024). Measuring HR analytics maturity: Supporting the development of a roadmap for data-driven human resources management. Management Decision, 62(13), 243–282. https://doi.org/10.1108/MD-11-2023-2087
  58. Roul, J., Mohapatra, L. M., & Kamesh, A. (2025). Exploring the landscape of human resource analytics: A systematic literature review and future agenda. Human Resource Development International, 28(4), 591–604. https://doi.org/10.1080/13678868.2024.2334982
  59. Saxena, M., Bagga, T., & Gupta, S. (2021). Fearless path for human resource personnel’s through analytics: A study of recent tools and techniques of human resource analytics and its implication. International Journal of Information Technology, 13(4), 1649–1657. https://doi.org/10.1007/s41870-021-00677-z
  60. Saxena, M., Bagga, T., Gupta, S., & Mittal, A. (2022). Employees’ Experiences of Accepting and Adopting HR Analytics: A Phenomenology Study. The Open Psychology Journal, 15(1), e187435012208040. https://doi.org/10.2174/18743501-v15-e2208040
  61. Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803
  62. Ter Huurne, M., Ronteltap, A., Corten, R., & Buskens, V. (2017). Antecedents of trust in the sharing economy: A systematic review. Journal of Consumer Behaviour, 16(6), 485–498. https://doi.org/10.1002/cb.1667
  63. Tessema, S. A., Yang, S., & Chen, C. (2025). The Effect of Human Resource Analytics on Organizational Performance: Insights from Ethiopia. Systems, 13(2), 134. https://doi.org/10.3390/systems13020134
  64. Thakur, S. J., Bhatnagar, J., Farndale, E., & Aeron, P. (2024). Human resource analytics, creative problem-solving capabilities and firm performance: Mediator moderator analysis using PLS-SEM. Personnel Review, 53(7), 1687–1709. https://doi.org/10.1108/PR-11-2021-0809
  65. Thakur, S. J., Bhatnagar, J., Farndale, E., & Aeron, P. (2025). How do human resources analytics create value for organizations? A qualitative investigation. Journal of Organizational Effectiveness: People and Performance, 12(3), 438–458. https://doi.org/10.1108/JOEPP-10-2022-0303
  66. Vadithe, R. N., & Kesari, B. (2025). Role of technology enablers for implementation of HR analytics in the Indian IT sector: A mediation analysis. Human Systems Management, 44(4), 598–614. https://doi.org/10.1177/01672533251314403
  67. Vadithe, R. N., Sreenu, N., Kesari, B., Chiranjeevi, V., Mudavath, C. B. N., & Rajput, R. C. (2025). The role of HR analytics in driving organizational agility and operational performance: Evidence from the construction sector. Engineering, Construction and Architectural Management. https://doi.org/10.1108/ECAM-01-2025-0076
  68. Vargas, R., Yurova, Y. V., Ruppel, C. P., Tworoger, L. C., & Greenwood, R. (2018). Individual adoption of HR analytics: A fine grained view of the early stages leading to adoption. The International Journal of Human Resource Management, 29(22), 3046–3067. https://doi.org/10.1080/09585192.2018.1446181
  69. Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
  70. Verma, S., Rana, N., & Meher, J. R. (2024). Identifying the enablers of HR digitalization and HR analytics using ISM and MICMAC analysis. International Journal of Organizational Analysis, 32(3), 504–521. https://doi.org/10.1108/IJOA-01-2023-3611
  71. Wahyudi, L. (2024). Watase Uake: Research Collaboration Tools. https://www.watase.web.id/
  72. Wang, L., Zhou, Y., Sanders, K., Marler, J. H., & Zou, Y. (2024). Determinants of effective HR analytics Implementation: An In-Depth review and a dynamic framework for future research. Journal of Business Research, 170, 114312. https://doi.org/10.1016/j.jbusres.2023.114312
  73. Wirges, F., & Neyer, A.-K. (2023). Towards a process-oriented understanding of HR analytics: Implementation and application. Review of Managerial Science, 17(6), 2077–2108. https://doi.org/10.1007/s11846-022-00574-0
  74. Xiao, Q., Yan, J., & Bamber, G. J. (2025). How does AI-enabled HR analytics influence employee resilience: Job crafting as a mediator and HRM system strength as a moderator. Personnel Review, 54(3), 824–843. https://doi.org/10.1108/PR-03-2023-0198