Drivers, barriers, and outcomes of organizational-level human resource analytics adoption: a PRISMA-guided systematic review
-
Published: November 16, 2025
-
Page: 370-386
Abstract
Human Resource Analytics (HRA) has emerged as a strategic capability that enables organizations to make data-driven and evidence-based human capital decisions. However, its adoption remains uneven and conceptually fragmented. This study systematically reviews the drivers, barriers, and ethical considerations influencing the organizational adoption of HRA between 2015 and 2025. A structured search was conducted exclusively in the Scopus database following the PRISMA 2020 protocol to ensure transparency and replicability. From an initial corpus of 295 records, 67 studies met the inclusion criteria after duplicate removal, relevance screening, and full-text assessment. The synthesis shows that the Resource-Based View (RBV) remains the dominant theoretical foundation, complemented by Technology-Organization-Environment (TOE) and Socio-Technical Systems perspectives. Technological readiness, top management support, and external support commonly enable adoption, while data quality, analytical capability, and privacy issues remain key barriers. Ethical and sustainability concerns – particularly fairness, transparency, and responsible data governance – are increasingly emphasized in recent studies. This review provides a structured synthesis and future research agenda bridging theoretical and practical perspectives, offering insights for strengthening analytics governance, organizational capability, and evidence-based decision cultures.
- Artificial intelligence
- Human Resource Analytics
- Systematic Literature Review
- Data-Driven Decision Making
- Organizational Performance

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Abellán-Sevilla, A.-J., & Ortiz-de-Urbina-Criado, M. (2023). Smart human resource analytics for happiness management. Journal of Management Development, 42(6), 514–525. https://doi.org/10.1108/JMD-03-2023-0064
- Abuzaid, A. N. (2024). Examining the moderating role of data literacy in the relationship between human resource analytics and employee innovative behavior. International Journal of Data and Network Science, 8(3), 1415–1428. https://doi.org/10.5267/j.ijdns.2024.4.001
- Alam, S., Dong, Z., Kularatne, I., & Rashid, M. S. (2025). Exploring approaches to overcome challenges in adopting human resource analytics through stakeholder engagement. Management Review Quarterly. https://doi.org/10.1007/s11301-025-00491-y
- Álvarez-Gutiérrez, F. J., Stone, D. L., Castaño, A. M., & García-Izquierdo, A. L. (2022). Human Resources Analytics: A systematic Review from a Sustainable Management Approach. Revista de Psicología Del Trabajo y de Las Organizaciones, 38(3), 129–147. https://doi.org/10.5093/jwop2022a18
- Anthun, K. S., Anthun, K. S., Håland, E., & Lillefjell, M. (2024). What influences the use of HR analytics in Human Resource management in Norwegian municipal health care services? BMC Health Services Research, 24(1), 1131. https://doi.org/10.1186/s12913-024-11610-y
- Arora, M., Prakash, A., Dixit, S., Mittal, A., & Singh, S. (2023). A critical review of HR analytics: Visualization and bibliometric analysis approach. Information Discovery and Delivery, 51(3), 267–282. https://doi.org/10.1108/IDD-05-2022-0038
- Arora, M., Prakash, A., Mittal, A., & Singh, S. (2023). Moderating role of resistance to change in the actual adoption of HR analytics in the Indian banking and financial services industry. Evidence-Based HRM: A Global Forum for Empirical Scholarship, 11(3), 253–270. https://doi.org/10.1108/EBHRM-12-2021-0249
- Arora, S., Chaudhary, P., & Singh, R. K. (2024). Adoption of HR analytics for future-proof decision making: Role of attitude toward artificial intelligence as a moderator. International Journal of Organizational Analysis. https://doi.org/10.1108/IJOA-03-2024-4392
- Bahuguna, P. C., Srivastava, R., & Tiwari, S. (2024). Human resources analytics: Where do we go from here? Benchmarking: An International Journal, 31(2), 640–668. https://doi.org/10.1108/BIJ-06-2022-0401
- Bassi, L., & McMurrer, D. (2016). Four Lessons Learned in How to Use Human Resource Analytics to Improve the Effectiveness of Leadership Development. Journal of Leadership Studies, 10(2), 39–43. https://doi.org/10.1002/jls.21471
- Bechter, B., Brandl, B., & Lehr, A. (2022). The role of the capability, opportunity, and motivation of firms for using human resource analytics to monitor employee performance: A multi‐level analysis of the organisational, market, and country context. New Technology, Work and Employment, 37(3), 398–424. https://doi.org/10.1111/ntwe.12239
- Belizón, M. J., & Kieran, S. (2022). Human resources analytics: A legitimacy process. Human Resource Management Journal, 32(3), 603–630. https://doi.org/10.1111/1748-8583.12417
- Belizón, M. J., Majarín, D., & Aguado, D. (2024). Human resources analytics in practice: A knowledge discovery process. European Management Review, 21(3), 659–677. https://doi.org/10.1111/emre.12605
- Bonilla-Chaves, E. F., & Palos-Sánchez, P. R. (2023). Exploring the Evolution of Human Resource Analytics: A Bibliometric Study. Behavioral Sciences, 13(3), 244. https://doi.org/10.3390/bs13030244
- Brandford Bervell, B., Kumar, J. A., Arkorful, V., Agyapong, E. M., & Osman, S. (2021). Remodelling the role of facilitating conditions for Google Classroom acceptance: A revision of UTAUT2. Australasian Journal of Educational Technology, 115–135. https://doi.org/10.14742/ajet.7178
- Budak, M. C., & Soyer, A. (2025). Human resources analytics performance measurement: A novel hybrid approach based on cumulative belief degree and PLS-SEM. International Journal of Intelligent Computing and Cybernetics, 18(2), 353–381. https://doi.org/10.1108/IJICC-10-2024-0535
- Cavanagh, J., Bartram, T., Walker, M., Pariona-Cabrera, P., & Halvorsen, B. (2024). Health services in Australia and the impact of antiquated rostering practices on medical scientists: A case for HR analytics and evidenced-based human resource management. Personnel Review, 53(1), 18–33. https://doi.org/10.1108/PR-09-2021-0690
- Cayrat, C., & Boxall, P. (2022). Exploring the phenomenon of HR analytics: A study of challenges, risks and impacts in 40 large companies. Journal of Organizational Effectiveness: People and Performance, 9(4), 572–590. https://doi.org/10.1108/JOEPP-08-2021-0238
- Chatterjee, S., Chaudhuri, R., Vrontis, D., & Siachou, E. (2022). Examining the dark side of human resource analytics: An empirical investigation using the privacy calculus approach. International Journal of Manpower, 43(1), 52–74. https://doi.org/10.1108/IJM-02-2021-0087
- Chhetri, S. D., Kumar, D., & Ranabhat, D. (2023). Investigating research in human resource analytics through the lens of systematic literature review. Human Systems Management, 1–17. https://doi.org/10.3233/HSM-230004
- Cho, W., Choi, S., & Choi, H. (2023). Human Resources Analytics for Public Personnel Management: Concepts, Cases, and Caveats. Administrative Sciences, 13(2), 41. https://doi.org/10.3390/admsci13020041
- Dahlbom, P., Siikanen, N., Sajasalo, P., & Jarvenpää, M. (2019). Big data and HR analytics in the digital era. Baltic Journal of Management, 15(1), 120–138. https://doi.org/10.1108/BJM-11-2018-0393
- Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
- Dhankhar, K., & Singh, A. (2023). Employees’ adoption of HR analytics – a theoretical framework based on career construction theory. Evidence-Based HRM: A Global Forum for Empirical Scholarship, 11(3), 395–411. https://doi.org/10.1108/EBHRM-02-2022-0053
- Dhiman, N., Kumar, S., & Nagpal, T. (2023). Employee’s Intentions to Use HR Analytics: Technology Acceptance Model with Job Relevance and Self-Efficacy. Vision: The Journal of Business Perspective, 09722629231183540. https://doi.org/10.1177/09722629231183540
- Di Prima, C., Cepel, M., Kotaskova, A., & Ferraris, A. (2024). Help me help you: How HR analytics forecasts foster organizational creativity. Technological Forecasting and Social Change, 206, 123540. https://doi.org/10.1016/j.techfore.2024.123540
- Di Prima, C., Hussain, W. M. H. W., & Ferraris, A. (2024). No more war (for talent): The impact of HR analytics on talent management activities. Management Decision, 62(10), 3109–3131. https://doi.org/10.1108/MD-07-2023-1198
- Di Prima, C., Kotaskova, A., Yildiz, H., & Ferraris, A. (2024). How to survive social crises? An HR analytics data-driven approach to improve social sustainable operations’ effectiveness. Management Decision, 62(7), 2064–2084. https://doi.org/10.1108/MD-06-2023-0973
- Diefenhardt, F., Rapp, M. L., Bader, V., & Mayrhofer, W. (2025). ‘In God We Trust. All Others Must Bring Data’: Unpacking the Influence of Human Resource Analytics on the Strategic Recognition of Human Resource Management. Human Resource Management Journal, 35(3), 597–612. https://doi.org/10.1111/1748-8583.12583
- Edwards, M. R., Charlwood, A., Guenole, N., & Marler, J. (2024). HR analytics: An emerging field finding its place in the world alongside simmering ethical challenges. Human Resource Management Journal, 34(2), 326–336. https://doi.org/10.1111/1748-8583.12435
- Ellmer, M., & Reichel, A. (2021). Staying close to business: The role of epistemic alignment in rendering HR analytics outputs relevant to decision-makers. The International Journal of Human Resource Management, 32(12), 2622–2642. https://doi.org/10.1080/09585192.2021.1886148
- Espegren, Y. (2024). Reasons for HR analytics adoption in public sector organisations: Evidence from Swedish public administrations. Personnel Review. https://doi.org/10.1108/PR-03-2024-0219
- Fernandez, V., & Gallardo-Gallardo, E. (2021). Tackling the HR digitalization challenge: Key factors and barriers to HR analytics adoption. Competitiveness Review: An International Business Journal, 31(1), 162–187. https://doi.org/10.1108/CR-12-2019-0163
- Gerber, M., Krause, A., Probst, J., & Heimann, M. (2024). HR analytics between ambition and reality: Current state and recommendations for the contribution of work and organizational psychology. Gruppe. Interaktion. Organisation. Zeitschrift Für Angewandte Organisationspsychologie (GIO), 55(2), 225–236. https://doi.org/10.1007/s11612-024-00743-7
- Gurusinghe, R. N., Arachchige, B. J. H., & Dayarathna, D. (2021). Predictive HR analytics and talent management: A conceptual framework. Journal of Management Analytics, 8(2), 195–221. https://doi.org/10.1080/23270012.2021.1899857
- Hülter, S. M., Ertel, C., & Heidemann, A. (2024). Exploring the individual adoption of human resource analytics: Behavioural beliefs and the role of machine learning characteristics. Technological Forecasting and Social Change, 208, 123709. https://doi.org/10.1016/j.techfore.2024.123709
- Jiang, Y., & Akdere, M. (2022). An operational conceptualization of human resource analytics: Implications for in human resource development. Industrial and Commercial Training, 54(1), 183–200. https://doi.org/10.1108/ICT-04-2021-0028
- Kardani Malekinezhad, M., Rahimnia, F., Eslami, G., & Farahi, M. M. (2025). Human resource analytics adoption: A framework-based analysis, fuzzy Delphi method and fuzzy SWARA. Journal of Advances in Management Research, 22(4), 597–627. https://doi.org/10.1108/JAMR-05-2024-0181
- Karwehl, L. J., & Kauffeld, S. (2021). Traditional and new ways in competence management: Application of HR analytics in competence management. Gruppe. Interaktion. Organisation. Zeitschrift Für Angewandte Organisationspsychologie (GIO), 52(1), 7–24. https://doi.org/10.1007/s11612-021-00548-y
- Kiran, P. R., Chaubey, A., & Shastri, R. K. (2024). Role of HR analytics and attrition on organisational performance: A literature review leveraging the SCM-TBFO framework. Benchmarking: An International Journal, 31(9), 3102–3129. https://doi.org/10.1108/BIJ-06-2023-0412
- Lasda Bergman, E. M. (2012). Finding Citations to Social Work Literature: The Relative Benefits of Using Web of Science, Scopus, or Google Scholar. The Journal of Academic Librarianship, 38(6), 370–379. https://doi.org/10.1016/j.acalib.2012.08.002
- Margherita, A. (2022). Human resources analytics: A systematization of research topics and directions for future research. Human Resource Management Review, 32(2), 100795. https://doi.org/10.1016/j.hrmr.2020.100795
- Marler, J. H., & Boudreau, J. W. (2017). An evidence-based review of HR Analytics. The International Journal of Human Resource Management, 28(1), 3–26. https://doi.org/10.1080/09585192.2016.1244699
- McCartney, S., & Fu, N. (2022). Bridging the gap: Why, how and when HR analytics can impact organizational performance. Management Decision, 60(13), 25–47. https://doi.org/10.1108/MD-12-2020-1581
- Michelotti, M., McColl, R., Puncheva‐Michelotti, P., Clarke, R., & McNamara, T. (2024). The effects of medium and sequence on personality trait assessments in face‐to‐face and videoconference selection interviews: Implications for HR analytics. Human Resource Management Journal, 34(2), 292–310. https://doi.org/10.1111/1748-8583.12425
- Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., & The PRISMA Group. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
- Muhammad, G., & Naz, F. (2022). A moderating role of HR analytics between employee engagement, retention and organisational performance. International Journal of Business Environment, 13(4), 345. https://doi.org/10.1504/IJBE.2022.126370
- Muhammad, G., Siddiqui, M. S., Rasheed, R., Shabbir, H., & Sher, R. F. (2024). Role of External Factors in Adoption of HR Analytics: Does Statistical Background, Gender and Age Matters? Journal of Business Analytics, 7(1), 1–14. https://doi.org/10.1080/2573234X.2023.2231966
- Panic, N., Leoncini, E., De Belvis, G., Ricciardi, W., & Boccia, S. (2013). Evaluation of the Endorsement of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement on the Quality of Published Systematic Review and Meta-Analyses. PLoS ONE, 8(12), e83138. https://doi.org/10.1371/journal.pone.0083138
- Pariona‐Cabrera, P., Cavanagh, J., & Halvorsen, B. (2023). Examining the need for HR analytics to better manage and mitigate incidents of violence against nurses and personal care assistants in aged care. Asia Pacific Journal of Human Resources, 61(4), 888–906. https://doi.org/10.1111/1744-7941.12361
- Patre, S. (2016). Six Thinking Hats Approach to HR Analytics. South Asian Journal of Human Resources Management, 3(2), 191–199. https://doi.org/10.1177/2322093716678316
- Qamar, Y., & Samad, T. A. (2022). Human resource analytics: A review and bibliometric analysis. Personnel Review, 51(1), 251–283. https://doi.org/10.1108/PR-04-2020-0247
- Ramachandran, R., Babu, V., & Murugesan, V. P. (2024). Human resource analytics revisited: A systematic literature review of its adoption, global acceptance and implementation. Benchmarking: An International Journal, 31(7), 2360–2390. https://doi.org/10.1108/BIJ-04-2022-0272
- Rasmussen, T., & Ulrich, D. (2015). Learning from practice: How HR analytics avoids being a management fad. Organizational Dynamics, 44(3), 236–242. https://doi.org/10.1016/j.orgdyn.2015.05.008
- Ratnam, D. S., & Devi, V. R. (2024). Addressing impediments to HR analytics adoption: Guide to HRD professionals. Human Resource Development International, 27(1), 142–151. https://doi.org/10.1080/13678868.2023.2195986
- Rigamonti, E., Colaiacovo, B., Gastaldi, L., & Corso, M. (2025). HR analytics and the data collection process: The role of attributions and perceived legitimacy in explaining employees’ fear of datafication. Journal of Organizational Effectiveness: People and Performance, 12(5), 1–23. https://doi.org/10.1108/JOEPP-06-2023-0246
- Rigamonti, E., Gastaldi, L., & Corso, M. (2024). Measuring HR analytics maturity: Supporting the development of a roadmap for data-driven human resources management. Management Decision, 62(13), 243–282. https://doi.org/10.1108/MD-11-2023-2087
- Roul, J., Mohapatra, L. M., & Kamesh, A. (2025). Exploring the landscape of human resource analytics: A systematic literature review and future agenda. Human Resource Development International, 28(4), 591–604. https://doi.org/10.1080/13678868.2024.2334982
- Saxena, M., Bagga, T., & Gupta, S. (2021). Fearless path for human resource personnel’s through analytics: A study of recent tools and techniques of human resource analytics and its implication. International Journal of Information Technology, 13(4), 1649–1657. https://doi.org/10.1007/s41870-021-00677-z
- Saxena, M., Bagga, T., Gupta, S., & Mittal, A. (2022). Employees’ Experiences of Accepting and Adopting HR Analytics: A Phenomenology Study. The Open Psychology Journal, 15(1), e187435012208040. https://doi.org/10.2174/18743501-v15-e2208040
- Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-Analyses, and Meta-Syntheses. Annual Review of Psychology, 70(1), 747–770. https://doi.org/10.1146/annurev-psych-010418-102803
- Ter Huurne, M., Ronteltap, A., Corten, R., & Buskens, V. (2017). Antecedents of trust in the sharing economy: A systematic review. Journal of Consumer Behaviour, 16(6), 485–498. https://doi.org/10.1002/cb.1667
- Tessema, S. A., Yang, S., & Chen, C. (2025). The Effect of Human Resource Analytics on Organizational Performance: Insights from Ethiopia. Systems, 13(2), 134. https://doi.org/10.3390/systems13020134
- Thakur, S. J., Bhatnagar, J., Farndale, E., & Aeron, P. (2024). Human resource analytics, creative problem-solving capabilities and firm performance: Mediator moderator analysis using PLS-SEM. Personnel Review, 53(7), 1687–1709. https://doi.org/10.1108/PR-11-2021-0809
- Thakur, S. J., Bhatnagar, J., Farndale, E., & Aeron, P. (2025). How do human resources analytics create value for organizations? A qualitative investigation. Journal of Organizational Effectiveness: People and Performance, 12(3), 438–458. https://doi.org/10.1108/JOEPP-10-2022-0303
- Vadithe, R. N., & Kesari, B. (2025). Role of technology enablers for implementation of HR analytics in the Indian IT sector: A mediation analysis. Human Systems Management, 44(4), 598–614. https://doi.org/10.1177/01672533251314403
- Vadithe, R. N., Sreenu, N., Kesari, B., Chiranjeevi, V., Mudavath, C. B. N., & Rajput, R. C. (2025). The role of HR analytics in driving organizational agility and operational performance: Evidence from the construction sector. Engineering, Construction and Architectural Management. https://doi.org/10.1108/ECAM-01-2025-0076
- Vargas, R., Yurova, Y. V., Ruppel, C. P., Tworoger, L. C., & Greenwood, R. (2018). Individual adoption of HR analytics: A fine grained view of the early stages leading to adoption. The International Journal of Human Resource Management, 29(22), 3046–3067. https://doi.org/10.1080/09585192.2018.1446181
- Venkatesh, Morris, Davis, & Davis. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
- Verma, S., Rana, N., & Meher, J. R. (2024). Identifying the enablers of HR digitalization and HR analytics using ISM and MICMAC analysis. International Journal of Organizational Analysis, 32(3), 504–521. https://doi.org/10.1108/IJOA-01-2023-3611
- Wahyudi, L. (2024). Watase Uake: Research Collaboration Tools. https://www.watase.web.id/
- Wang, L., Zhou, Y., Sanders, K., Marler, J. H., & Zou, Y. (2024). Determinants of effective HR analytics Implementation: An In-Depth review and a dynamic framework for future research. Journal of Business Research, 170, 114312. https://doi.org/10.1016/j.jbusres.2023.114312
- Wirges, F., & Neyer, A.-K. (2023). Towards a process-oriented understanding of HR analytics: Implementation and application. Review of Managerial Science, 17(6), 2077–2108. https://doi.org/10.1007/s11846-022-00574-0
- Xiao, Q., Yan, J., & Bamber, G. J. (2025). How does AI-enabled HR analytics influence employee resilience: Job crafting as a mediator and HRM system strength as a moderator. Personnel Review, 54(3), 824–843. https://doi.org/10.1108/PR-03-2023-0198