Extending the UTAUT framework: the role of security, privacy, and trust in generative AI adoption among indonesian university students

Abstract

The rapid expansion of Generative AI adoption in higher education has not been matched by sufficient understanding of how security, privacy, and trust shape its use, leaving a research gap regarding how risks and trust are formed in academic settings. This study examines the effects of security, privacy, and trust on students’ behavioral intention and actual use of Generative AI by extending the UTAUT framework through the integration of these constructs. A quantitative survey was administered to 450 students at Bina Nusantara University using purposive convenience sampling, and the data were analyzed with PLS-SEM (SmartPLS 3.0). The results show that Performance Expectancy (β = 0.247; t = 4.355; p < 0.001), Effort Expectancy (β = 0.213; t = 3.597; p < 0.001), and Social Influence (β = 0.186; t = 3.564; p < 0.001) significantly shape Behavioral Intention, while Behavioral Intention strongly predicts Use Behavior (β = 0.368; t = 6.700; p < 0.001). Facilitating Conditions also exert a direct influence on Use Behavior (β = 0.228; t = 5.511; p < 0.001). Among the risk-related variables, Security affects Behavioral Intention (β = 0.150; t = 2.981; p = 0.003) but not actual behavior, and Privacy is not significant for either dependent variable (p > 0.05). Trust consistently predicts both intention and behavior (β = 0.108; p = 0.010; β = 0.148; p = 0.002). These findings extend UTAUT by underscoring the mediating role of trust in Generative AI adoption and offer policy implications for improving data security transparency and institutional trust-building strategies.

Keywords
  • Generative AI
  • Artificial Intelligence
  • Security
  • Privacy
  • Trust
  • Students
  • Bina Nusantara University
References
  1. Al-Emran, M., Mezhuyev, V., & Kamaludin, A. (2020). Towards a conceptual model for examining the impact of knowledge management factors on mobile learning acceptance. Technology in Society, 61, 101247. https://doi.org/https://doi.org/10.1016/j.techsoc.2020.101247
  2. Andrews, J. E., Ward, H., & Yoon, J. (2021). UTAUT as a Model for Understanding Intention to Adopt AI and Related Technologies among Librarians. The Journal of Academic Librarianship, 47(6), 102437. https://doi.org/https://doi.org/10.1016/j.acalib.2021.102437
  3. Baharin, A. T., Sahadun, N. A., Ramli, S., & liyana Redzuan, N. A. (2024). Exploring the Adoption of Generative Artificial Intelligence by TVET Students: A UTAUT Analysis of Perceptions, Benefits, and Implementation Challenges. https://www.researchgate.net/profile/Ts-Ahmad-Baharin/publication/389879224_Exploring_the_Adoption_of_Generative_Artificial_Intelligence_by_TVET_Students_A_UTAUT_Analysis_of_Perceptions_Benefits_and_Implementation_Challenges/links/67d616f4e62c604a0ddaa813/Exploring-the-Adoption-of-Generative-Artificial-Intelligence-by-TVET-Students-A-UTAUT-Analysis-of-Perceptions-Benefits-and-Implementation-Challenges.pdf
  4. Baidoo-anu, D., & Owusu Ansah, L. (2023). Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning TT - Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1337500
  5. Borah, A. R., N., T. N., & Gupta, S. (2024). Improved Learning Based on GenAI. 2024 2nd International Conference on Intelligent Data Communication Technologies and Internet of Things (IDCIoT), 1527–1532. https://doi.org/10.1109/IDCIoT59759.2024.10467943
  6. Cheng, M., Li, X., & Xu, J. (2022). Promoting Healthcare Workers’ Adoption Intention of Artificial-Intelligence-Assisted Diagnosis and Treatment: The Chain Mediation of Social Influence and Human–Computer Trust. In International Journal of Environmental Research and Public Health (Vol. 19, Issue 20). https://doi.org/10.3390/ijerph192013311
  7. Chukwuere, J. E. (2025). Developing a generative AI conceptual framework for higher education. The Indonesian Journal of Computer Science, 14(5). https://doi.org/10.33022/ijcs.v14i5.4997
  8. Elnaem, M. H., Okuyan, B., Mubarak, N., Thabit, A. K., AbouKhatwa, M. M., Ramatillah, D. L., Isah, A., Al-Jumaili, A. A., & Nazar, N. I. M. (2025). Students’ acceptance and use of generative AI in pharmacy education: international cross-sectional survey based on the extended unified theory of acceptance and use of technology. International Journal of Clinical Pharmacy, 47(4), 1097–1108. https://doi.org/10.1007/s11096-025-01936-w
  9. Fang, W., Na, M., & Alam, S. S. (2025). Usage Intention of AI Among Academic Librarians in China: Extension of UTAUT Model. Sustainability, 17(7), 2833. https://www.researchgate.net/profile/Meng-Na-8/publication/390106158_Usage_Intention_of_AI_Among_Academic_Librarians_in_China_Extension_of_UTAUT_Model/links/67dff92772f7f37c3e87f63e/Usage-Intention-of-AI-Among-Academic-Librarians-in-China-Extension-of-UTAUT-Model.pdf
  10. Fayaza, M. S. F., Senthilrajah, T., Wijesinghe, U., & Ahangama, S. (2025). Role of GenAI in Student Knowledge Enhancement: Learner Perception. 2025 5th International Conference on Advanced Research in Computing (ICARC), 1–6. https://doi.org/10.1109/ICARC64760.2025.10963193
  11. Ghimire, A., Imran, M. A. U., Biswas, B., Tiwari, A., & Saha, S. (2024). Behavioral Intention to Adopt Artificial Intelligence in Educational Institutions: A Hybrid Modeling Approach. Journal of Computer Science and Technology Studies, 6(3), 56–64. https://www.researchgate.net/profile/Ashok-Ghimire-2/publication/382952337_Behavioral_Intention_to_Adopt_Artificial_Intelligence_in_Educational_Institutions_A_Hybrid_Modeling_Approach/links/67b6eba4645ef274a489b995/Behavioral-Intention-to-Adopt-Artificial-Intelligence-in-Educational-Institutions-A-Hybrid-Modeling-Approach.pdf
  12. Gu, Jiahe, & Yan, Zi. (2025). Effects of GenAI Interventions on Student Academic Performance: A Meta-Analysis. Journal of Educational Computing Research, 63(6), 1460–1492. https://doi.org/10.1177/07356331251349620
  13. Hair Jr, J. F. (2020). Next-generation prediction metrics for composite-based PLS-SEM. Industrial Management & Data Systems, 121(1), 5–11. https://doi.org/10.1108/IMDS-08-2020-0505
  14. Helmiatin, Hidayat, A., & Kahar, M. R. (2024). Investigating the adoption of AI in higher education: a study of public universities in Indonesia. Cogent Education, 11(1), 2380175. https://doi.org/10.1080/2331186X.2024.2380175
  15. Hosseini, N. (2025). The Effect of AI Self-Efficacy on Teachers’ Behavioral Intention to Use AI in Education: The Mediating Role of Perceived Usefulness and Perceived Ease of Use. https://www.sid.ir/paper/1615852/en
  16. Huang, A. Y. Q., Lu, O. H. T., & Yang, S. J. H. (2023). Effects of artificial Intelligence–Enabled personalized recommendations on learners’ learning engagement, motivation, and outcomes in a flipped classroom. Computers & Education, 194, 104684. https://doi.org/https://doi.org/10.1016/j.compedu.2022.104684
  17. Jain, R., Garg, N., & Khera, S. N. (2022). Adoption of AI-Enabled Tools in Social Development Organizations in India: An Extension of UTAUT Model. Frontiers in Psychology, Volume 13-2022. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2022.893691
  18. Kadaruddin, K. (2023). Empowering education through Generative AI: Innovative instructional strategies for tomorrow’s learners. International Journal of Business, Law, and Education, 4(2), 618–625. https://doi.org/10.56442/ijble.v4i2.215
  19. Kaswan, K. S., Dhatterwal, J. S., & Ojha, R. P. (2024). AI in personalized learning. In Advances in technological innovations in higher education (pp. 103–117). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/9781003376699-9/ai-personalized-learning-kuldeep-singh-kaswan-jagjit-singh-dhatterwal-rudra-pratap-ojha
  20. Kbaier, E., Bakini, F., & Oueslaty, K. (2025). Investigating the influence of AI chatbot interactions on attitudes and purchase intentions: extending the UTAUT framework from brands perspective. Journal of Business Strategy, 46(1–2), 29–50. https://doi.org/10.1108/JBS-05-2024-0086
  21. Masrek, M. N., Baharuddin, M. F., & Syam, A. M. (2025). Determinants of Behavioral Intention to Use Generative AI: The Role of Trust, Personal Innovativeness, and UTAUT II Factors. International Journal of Basic and Applied Sciences, 14(4), 378–390. https://www.researchgate.net/profile/Mohamad-Masrek/publication/394537681_Determinants_of_Behavioral_Intention_to_Use_Generative_AI_The_Role_of_Trust_Personal_Innovativeness_and_UTAUT_II_Factors/links/68a3c3af7984e374ace97e54/Determinants-of-Behavioral-Intention-to-Use-Generative-AI-The-Role-of-Trust-Personal-Innovativeness-and-UTAUT-II-Factors.pdf
  22. Mittal, U., Sai, S., Chamola, V., & Sangwan, D. (2024). A Comprehensive Review on Generative AI for Education. IEEE Access, 12, 142733–142759. https://doi.org/10.1109/ACCESS.2024.3468368
  23. Mozie, N. M., Ghazali, N., & Husin, L. I. A. (2025). Adopting Artificial Intelligence in Higher Education: Insights from the UTAUT Framework on Students Intentions. Advances in Business Research International Journal, 11(1), 71–79.
  24. Pasaribu, P. N., Abidin, Z., & Putri, M. A. (2025). Factors Influencing The Acceptance of ChatGPT for Students: Analysis of UTAUT2 Framework with Personal Innovativeness. Diversity: Jurnal Ilmiah Pascasarjana, 5(2), 125–141. https://doi.org/10.32832/diversityjournal.v5i2.20145
  25. Rahi, S., Othman Mansour, M. M., Alghizzawi, M., & Alnaser, F. M. (2019). Integration of UTAUT model in internet banking adoption context: The mediating role of performance expectancy and effort expectancy. Journal of Research in Interactive Marketing, 13(3), 411–435. https://doi.org/10.1108/JRIM-02-2018-0032
  26. Rana, M. M., Siddiqee, M. S., Sakib, M. N., & Ahamed, M. R. (2024). Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework. Heliyon, 10(18). https://doi.org/10.1016/j.heliyon.2024.e37569
  27. Rokeman, N. R. M. (2024). Likert measurement scale in education and social sciences: explored and explained. EDUCATUM Journal of Social Sciences, 10(1), 77–88. https://ejournal.upsi.edu.my/index.php/EJOSS/article/download/9804/5372
  28. Sadewo, S. T., Ratnawati, S., Giovanni, A., & Widayanti, I. (2025). The Influence of Personal Innovativeness on ChatGPT Continuance Usage Intention among Students. SATESI: Jurnal Sains Teknologi Dan Sistem Informasi, 5(1), 88–98. https://doi.org/10.54259/satesi.v5i1.4117
  29. Silva, G., Godwin, G., & Jayanagara, O. (2024). The impact of AI on personalized learning and educational analytics. International Transactions on Education Technology (ITEE), 3(1), 36–46. https://doi.org/10.33050/itee.v3i1.669
  30. Su, J., Wang, Y., Liu, H., Zhang, Z., Wang, Z., & Li, Z. (2025). Investigating the factors influencing users’ adoption of artificial intelligence health assistants based on an extended UTAUT model. Scientific Reports, 15(1), 18215. https://doi.org/10.1038/s41598-025-01897-0
  31. Tanantong, T., & Wongras, P. (2024). A UTAUT-Based Framework for Analyzing Users’ Intention to Adopt Artificial Intelligence in Human Resource Recruitment: A Case Study of Thailand. In Systems (Vol. 12, Issue 1). https://doi.org/10.3390/systems12010028
  32. Tian, W., Ge, J., Zhao, Y., & Zheng, X. (2024). AI Chatbots in Chinese higher education: adoption, perception, and influence among graduate students—an integrated analysis utilizing UTAUT and ECM models. Frontiers in Psychology, Volume 15-2024. https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2024.1268549
  33. Tran, P. T., & Nguyen, D. T. (2024). Behavioral Intention to Adopt Artificial Intelligence for Teaching in Higher Education: A Case Study in Vietnam. Journal of Computer Science and Technology Studies, 6(2). http://ijlrhss.com/paper/volume-7-issue-4/9-HSS-2456.pdf
  34. Utama, N. P., Tobing, P. E. L., & Kurniawan, Y. (2025). The Influence of Artificial Intelligence on User Experience Design: Systematic Literature Review. 2025 IEEE Symposium on Industrial Electronics & Applications (ISIEA), 1–6. https://doi.org/10.1109/ISIEA65768.2025.11138410
  35. Valle, N. N., Kilat, R. V., Lim, J., General, E., Dela Cruz, J., Colina, S. J., Batican, I., & Valle, L. (2024). Modeling learners’ behavioral intention toward using artificial intelligence in education. Social Sciences & Humanities Open, 10, 101167. https://doi.org/https://doi.org/10.1016/j.ssaho.2024.101167
  36. Venkatesh, V. (2022). Adoption and use of AI tools: a research agenda grounded in UTAUT. Annals of Operations Research, 308(1), 641–652. https://doi.org/10.1007/s10479-020-03918-9
  37. Whyte, F., & Dewi, Y. (2025). Key Drivers Of Chatgpt Adoption: Managerial Perspective From Indonesian Communities. JMBI UNSRAT (Jurnal Ilmiah Manajemen Bisnis Dan Inovasi Universitas Sam Ratulangi)., 12(1), 391–412. https://doi.org/10.35794/jmbi.v12i1.60948
  38. Yakubu, M. N., David, N., & Abubakar, N. H. (2025). Students’ behavioural intention to use content generative AI for learning and research: A UTAUT theoretical perspective. Education and Information Technologies, 30(13), 17969–17994. https://doi.org/10.1007/s10639-025-13441-8
  39. Yonatan, A. Z. (2025). 95% Mahasiswa RI Gunakan AI dalam Proses Pembelajaran. Goodstats.Id. https://data.goodstats.id/statistic/95-mahasiswa-ri-gunakan-ai-dalam-proses-pembelajaran-FIm7A
  40. Zaman, S. U., Ali, S. S., Alam, S. H., & Kamal, M. H. (2025). Assessing Student’s Behavioral Intentions Towards AI Based Learning Tools. Journal of Asian Development Studies, 14(1), 656–672. https://doi.org/10.62345/jads.2025.14.1.50
  41. Zhao, L., Rahman, M. H., Yeoh, W., Wang, S., & Ooi, K.-B. (2024). Examining factors influencing university students’ adoption of generative artificial intelligence: a cross-country study. Studies in Higher Education, 1–23. https://doi.org/10.1080/03075079.2024.2427786