Mixed-methods assessment of electronic medical record implementation and its effects on medical record work units in hospital

Abstract

The Regulation of the Minister of Health Number 24 of 2022 mandates that all healthcare facilities in Indonesia implement Electronic Medical Records (EMR) to improve the quality and efficiency of health services. In response to this policy, this study utilized a cross-sectional mixed-methods approach to evaluate the implementation of EMR and its impact on medical record work units in a regional hospital. A total of 26 EMR users, consisting of medical record officers and relevant health workers, were selected through total sampling to provide both quantitative and qualitative data. The evaluation framework integrates the End User Computing Satisfaction (EUCS) and Technology Acceptance Model (TAM) to assess system quality, information quality, user satisfaction, and intention to continue using EMR. Quantitative findings demonstrate that information quality and system quality have strong and statistically significant relationships with intention to use EMR (p = 0.001), explaining 66.3% and 52.8% of the variance, respectively. Meanwhile, thematic analysis of qualitative data reveals that EMR enhances workflow efficiency, accelerates information retrieval, and strengthens service coordination across hospital units. However, challenges such as occasional system downtime, limited digital literacy among some users, and incomplete menu features still hinder optimal utilization. The integrated interpretation indicates that sustained user acceptance relies on the alignment between perceived usefulness and reliable system performance. This study underscores the need for continuous system refinement, structured and ongoing training, and adequate resource support to ensure EMR implementation contributes effectively to hospital service quality and digital health transformation in Indonesia.

Keywords
  • Electronic medical records
  • Health information systems
  • Technology acceptance model
  • User satisfaction
  • Mixed-methods research
References
  1. Aggelidis, V. P., & Chatzoglou, P. D. (2012). Hospital information systems: Measuring end user computing satisfaction (EUCS). Journal of Biomedical Informatics, 45(3), 566–579. https://doi.org/10.1016/j.jbi.2012.02.009
  2. Andika, A., Kairupan, B. H. R., & Niode, N. J. (2025). Analisis Implementasi Rekam Medis Elektronik di Instalasi Rawat Inap Rumah Sakit Gunung Maria, Tomohon. Jurnal Promotif Preventif, 8(2), 337–346. http://journal.unpacti.ac.id/index.php/JPP
  3. Choubey, M., Mishra, H., Soni, K., & Patra, P. K. (2016). Implementation of indigenous electronic medical record system to facilitate care of sickle cell disease patients in chhattisgarh. Journal of Clinical and Diagnostic Research, 10(2), 1–6. https://doi.org/10.7860/JCDR/2016/16047.7186
  4. Cowie, M. R., Blomster, J. I., Curtis, L. H., Duclaux, S., Ford, I., Fritz, F., Goldman, S., Janmohamed, S., Kreuzer, J., Leenay, M., Michel, A., Ong, S., Pell, J. P., Southworth, M. R., Stough, W. G., Thoenes, M., Zannad, F., & Zalewski, A. (2017). Electronic health records to facilitate clinical research. Clinical Research in Cardiology, 106(1), 1–9. https://doi.org/10.1007/s00392-016-1025-6
  5. Dubovitskaya, A., Xu, Z., Ryu, S., Schumacher, M., & Wang, F. (2017). Secure and Trustable Electronic Medical Records Sharing using Blockchain. AMIA Annual Symposium Proceedings, 2017, 650–659.
  6. Evans, R. S. (2016). Electronic Health Records: Then, Now, and in the Future. Yearbook of Medical Informatics, 25(1), S48–S61. https://doi.org/10.15265/IYS-2016-s006
  7. Faida, E. W., & Ali, A. (2021). Analisis Kesiapan Implementasi Rekam Medis Elektronik dengan Pendekatan DOQ-IT (Doctor’s Office Quality-Information Technology). Jurnal Manajemen Informasi Kesehatan Indonesia, 9(1), 59–67. https://doi.org/10.33560/jmiki.v9i1.315
  8. Farid, A., & Maharani, S. (2025). Implementasi Electronic Medical Record Di Rumah Sakit X Kabupaten Kudus. Journal of Administrative and Social Science, 6(2), 17–21. https://doi.org/10.55606/jass.v6i2.1865
  9. Halpern, Y., Horng, S., Choi, Y., & Sontag, D. (2016). Electronic medical record phenotyping using the anchor and learn framework. Journal of the American Medical Informatics Association, 23(4), 731–740. https://doi.org/10.1093/jamia/ocw011
  10. Harahap, R. S., Deswita, A., Azwa, N. A., Natasya, D. F. A., Purba, F. A., & Purba, S. H. (2024). Implementasi Sistem Informasi Rekam Medis Elektronik Untuk Meningkatkan Pelayanan Kesehatan Didaerah Terpencil. Health Care: Jurnal Kesehatan, 13(2), 316–322. https://doi.org/10.36763/healthcare.v13i2.517
  11. Ikawati, F. R., Ansyori, A., & Jayanti, L. D. (2025). Evaluasi penerapan rekam medis elektronik di puskesmas jabung. Jurnal Dinamika Kesehatan Terpadu, 6(2), 105–114.
  12. Kassiuw, J. F. M. (2024). Faktor Yang Berhubungan Pada Motivasi Pengguna Dan Implementasi Rekam Medis Elektronik Dengan Efisiensi Pelayanan Di Instalasi Rawat Jalan Rsud Kebayoran Lama. Jurnal ARSI : Administrasi Rumah Sakit Indonesia, 10(3), 127–138. https://doi.org/10.7454/arsi.v10i3.1194
  13. Kemenkes. (2022). Peraturan Menteri Kesehatan Nomor 24 Tahun 2022 tentang Rekam Medis. https://doi.org/10.1097/00006231-199705000-00098
  14. Nguyen, P., Tran, T., Wickramasinghe, N., & Venkatesh, S. (2017). Deepr: A Convolutional Net for Medical Records. IEEE Journal of Biomedical and Health Informatics, 21(1), 22–30. https://doi.org/10.1109/JBHI.2016.2633963
  15. Parwata, I. M. M. A., Purwanti, I. S., & Aditya, M. W. (2025). Efektivitas Penggunaan Rekam Medis Elektronik Pendaftaran Rawat Jalan Di Rumah Sakit Tk. II Udayana. Jurnal Yoga Dan Kesehatan, 8(1), 23–34. https://doi.org/10.25078/jyk.v8i1.4009
  16. Resty, D. E., & Hariyati, R. T. (2024). Evaluasi Penerapan Electronic Medical Record oleh Perawat Dalam Pendokumentasian Asuhan Keperawatan dan Dampaknya Terhadap Kepuasan Perawat: A Literature Review. MANUJU: Malahayati Nursing Journal, 6(3), 1241–1258. https://doi.org/10.33024/mnj.v6i3.12943
  17. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S., & Sontag, D. (2017). Learning a Health Knowledge Graph from Electronic Medical Records. Scientific Reports, 7(1), 1–11. https://doi.org/10.1038/s41598-017-05778-z
  18. Silva, A. A., & Dewi, T. S. (2023). Hambatan Implementasi Rekam Medis Elektronik dari Perspektif Perekam Medis Dengan Metode PIECES. Jurnal Manajemen Informasi Kesehatan Indonesia (JMIKI), 11(2), 150–156. https://doi.org/10.33560/jmiki.v11i2.597
  19. Siswati, S., Syafrawati, & Khairunnisa, M. (2025). Penilaian Implementasi Rekam Medis Elektronik Dengan Metode HOT-FIT di Puskesmas Kota Padang. Jurnal Kesehatan Komunitas (Journal of Community Health), 11(1), 64–73. https://doi.org/10.25311/keskom.vol11.iss1.2140
  20. Susanto, A. B., Yuniawati, R. P., & Sukajie, B. (2024). Efektivitas Rekam Medik Elektronik Di Klinik Kusuma Medical Center Batukajang Kalimantan Timur. Indomera: Jurnal Magister Manajemen, 5(10), 1–9. https://doi.org/10.55178/idm.v5i10.394
  21. Tsai, C. H., Eghdam, A., Davoody, N., Wright, G., Flowerday, S., & Koch, S. (2020). Effects of Electronic Health Record Implementation and Barriers to Adoption and Use: A Scoping Review and Qualitative Analysis of the Content. Life, 10(12), 1–27. https://doi.org/10.3390/life10120327
  22. Xiao, C., Choi, E., & Sun, J. (2018). Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review. Journal of the American Medical Informatics Association, 25(10), 1419–1428. https://doi.org/10.1093/jamia/ocy068